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I. INTRODUCTION

DEVELOPMENTS in the micro-manipulation field, such
as optical tweezers, has made it possible to deliver pi-

coNewton forces and nanometer displacements to microscopic
molecules such as DNA. These experiments have enable
scientists to study biomolecular machines such as cargo-
transporting motor proteins kinesin and myosin-V. Essentially,
these experiments specifically study how dwell time varies
when assisting or hindering loads are applied. Figure 1 shows
the experimental setup.

Fig. 1. The kinesin is seen attaching to a bead trapped in the optical tweezers.
The dwell time can be observed as the kinesin moves along the microtubule.

The dwell time can be modeled using transition state theory
which gives the following equation for dwell time:

ti =
1

τ0
eFiδ/kT (1)

The nature of optical tweezers does not allow a user to produce
a discrete predetermined force; instead, a randomized force in
a range of forces can be produced. The current method simply
takes the mean of the many measurements in a given interval.
Because the dwell time varies nonlinearly with force, simply
taking the mean of a given data set will give inaccurate results.
The inaccuracy is due to the fact that - for a given range of
forces - the dwell time for larger forces will be much longer
than the mean force dwell time. Conversely, dwell time will
be close to the mean force dwell time for smaller forces. This
causes the mean data to be biased towards a longer dwell time.

II. MAXIMUM LIKELIHOOD METHOD

Instead of taking the mean of a given range of data, a
method which fits all the data to the known theoretical model
through the use of maximum likelihood estimators will provide
a more accurate result. The log-likelihood function for this

experiment is shown in equation 2 below (with detailed cal-
culations shown in appendix B). Note that each measurement
has a interdependently measured dwell time (t) and force (F ).

logL(τ0, δ|t, F ) = −nlogτ0 +
δ

kT

n∑
i=1

Fi−
n∑
i=1

tie
Fiδ/kT (2)

Taking the derivative with respect to the δ and τ0 parameters
and setting this result equal to zero gives the following
equations:

∂

∂δ
logL(τ0, δ|t, F ) =

1

τ0
− 1

Nτ20

n∑
i=1

tie
Fiδ/kT = 0 (3)

∂

∂τ0
logL(τ0, δ|t, F ) = F̄ − 1

Nτ0

n∑
i=1

tiFie
Fiδ/kT = 0 (4)

Generally solving for δ in equation 3 and τ0 in equation 4
would yield the maximum likelihood parameters; however,
these equations do not solve for δ very easily. Instead, solving
for τ0 in each equation (shown in equations 5 and 6) while
then determining for what value δ the two equations intersect
will yield the desired parameters. Section III below will use
this method to determine the two distributions of τ0 as well
as the final estimator for δ.

τ̂0 =
1

N

n∑
i=1

tie
Fiδ̂/kT (5)

τ̂0 =
1

NF̄

n∑
i=1

Fitie
Fiδ̂/kT (6)

III. USING R TO DETERMINE DWELL TIME

This section was focused on using R to simulate the
distributions for the two values of τ̂0 defined in Equations
3 and 4. The final goal is to identify the intersection of the
two functions (when plotted as a function of δ̂) to find the
estimated value of δ̂.

It is important to note that the magnitudes of the vari-
ous physical parameters (such as the force, or Boltzmann’s
constant) were disregarded for this paper just to present the
feasibility that the data could be estimated.

First, a time vector was created as a random exponential
vector (in accordance with the relationships). Equation 3 could
then be estimated in R by a FOR loop iterating the mean as a
function of the random exponential time:

> for(j in 1:N){t[j]<-rexp(1,exp(F[j]))}
> for (j in 1:N){tau1[j]<-mean(t*exp(delta[j]*F))}
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Equation 4 could then be estimated by creating a similar
loop taking into account the inverse relationship to the mean
of the applied force.

> for (j in 1:N){tau2[j]<-mean(t*F*exp(delta[j]+
*F))/mean(F)}

We now have established an estimator for both values of
τ0 as a function of δ̂. These two relationships were plotted
in Figure 2 in order to highlight the two relationships. The
intersection is labeled with a vertical dashed line. This location
was determined to be δ̂ = 1.028829.

0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.
90

0.
95

1.
00

1.
05

1.
10

0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.
90

0.
95

1.
00

1.
05

1.
10

δ̂

τ̂ 1
 a

nd
 τ̂

2

Dwell Time Estimators

τ̂1
τ̂2

Fig. 2. The two estimators for τ̂0 plotted as a function of δ̂. The intersection
is shown by the vertical dashed blue line.

The location of the intersection was found by taking the
iterative (paired) difference between the two vectors for τ̂0 and
finding the value of minimum. By finding the index location of
this minimum difference, this corresponds to the same index
location in the δ̂ vector which will be the x location of the
intersection:

> for (j in 1:N){diff[j]=abs(tau1[j]-tau2[j])}
> inter = min(diff)
> index = which(diff==inter)

It is important to note that is this just one iteration of one
value for the estimator. In reality, it would be ideal to simulate
and find a number of values for the estimator and take the
mean of this result. This was performed in MATLAB once the
data was produced in R since working in R is not conducive
to correct and useful nested FOR loops. One-hundred thirty
values for the estimator were found with a mean of 1.0282
and a standard deviation of 0.0707. A histogram of this data
compared next to the ideal normal distribution is shown in
Figure 3.
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Fig. 3. The histogram of 130 values of δ̂. The red curve highlights the ideal
Gaussian distribution.

IV. CONCLUSION

Using the two relationships for the estimators for τ̂0, we
could successfully find a value for the estimator δ̂ due to the
intersection. Once these two estimators are found equation 1
can be used to determine dwell time. By iterating this process
a number of times, we could find a result for the mean of
the values of the estimators such that ¯̂

δ = 1.0282 and σδ̂ =
0.0707.

The next step in this process would be to provide more
iterations (samples) and hopefully complete the project in
one software package as well as provide real values for
other physical characteristics so that the magnitude of the
displacement estimator is useful.

References including equation derivations, software code,
and variable definitions follow this section.

APPENDIX A
VARIABLE DEFINITIONS

The section below defines the variables used in this paper.

1) τ0 is the characteristic disassociation time with no force
2) δ is the displacement from equilibrium.
3) Fi is the force associated with the ith observation.
4) ti is the dwell time associated with the ith observation.
5) k is Boltzmann’s constant.
6) T is the absolute temperature

APPENDIX B
LIKELIHOOD FUNCTION

The density function is derived from the transition state
model where the dwell time varies exponentially as a function
of force.

f(t|τ0, δ, F ) = τ−1
0 eFδ/kT exp

(
− t

τ0
eFδ/kT

)
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To find the likelihood function, the following operator is
applied:

L(τ0, δ|t, F ) =

n∏
i=1

τ−1
0 eFiδ/kT exp

(
− t

τ0
eFδ/kT

)
Taking the log of both sides yields Equation 2

logL(τ0, δ|t, F ) = −nlogτ0 +
δ

kT

n∑
i=1

Fi −
n∑
i=1

tie
Fiδ/kT

APPENDIX C
R CODE

# Clear all
rm(list=ls(all=TRUE))

# Constants
N = 1000
F<- runif(N)
t<- rep(0,N)
tau1 = rep(0,N)
tau2 = rep(0,N)
diff = rep(0,N)
for(j in 1:N){t[j]<-rexp(1,exp(F[j]))}

# Define tau1 and tau2
delta=seq.int(0.9,1.2,length.out=1000)
for (j in 1:N){tau1[j]<-mean(t*exp(delta[j] +
*F))}
for (j in 1:N){tau2[j]<-mean(t*F*exp( +
delta[j]*F))/mean(F)}
for (j in 1:N){diff[j]=abs(tau1[j]-tau2[j])}
inter = min(diff)
index = which(diff==inter)

# Plot the results
par(mar=c(5, 5, 4, 3) + 0.1)
plot(delta,tau1,xlim=c(0.9,1.2),ylim=+
c(0.9,1.1),type="l",xlab="", +

ylab="",lty=1,lwd=3)
par(new=TRUE)
xlab.name = expression(hat(delta))
ylab.name = expression(paste(hat(tau)[1] +
," and ",hat(tau)[2]))
plot(delta,tau2,xlim=c(0.9,1.2),ylim= +
c(0.9,1.1),type="l",xlab=xlab.name, +

ylab=ylab.name,col="RED",lty=1,lwd=3, +
cex.lab=2)
title(main="Dwell Time Estimators", +
cex.main=2)
legend("bottomright",c(expression(hat(tau)[1] +
),expression(hat(tau)[2])),col= +
c("BLACK","RED"),lty=1,lwd=3,cex=1.5)

# Add vertical line
par(new=TRUE)
abline(v=delta[index],lty=3,col="BLUE")

APPENDIX D
MATLAB CODE

hist(x,20)
hold on
axis([0.8 1.3 0 20])
Mean = mean(x)
Standard_Deviation = std(x)

title('Intersection Distribution')
xlabel('Intersection')
ylabel('Frequency')
x1 = linspace(0.80,1.3,1000);
gauss = 15.5*exp(-(x1-Mean).ˆ2/.01);
p = plot(x1,gauss)
set(p,'Color','red','LineWidth',3)

ACKNOWLEDGMENT

The authors would like to thank Dr. J. Watkins for his
guidance and teaching during the Spring, 2011 semester at
the University of Arizona.

REFERENCES

[1] Statistics Case Studies: Single Molecule Dwell Times. MATH 363, 2009.


